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Abstract— How can a robot understand the environment it
is in, and decide the feasibility of an instructed task in that
environment? To address this question, we have developed a
system that supports robotic manipulation and navigation by
leveraging an extension of IEEE CORA [1] ontology. This
ontology contains knowledge of both robotic tasks and entities
in an indoor environment. Contrary to the prior works [2]
that lacked usage of ontology in task capability understanding,
the proposed system uses an explainable semantic approach
leveraging perception and semantic web technology to check
task execution feasibility in realistic settings. This utilizes scene
context understanding or the world model of the robot. Hence,
we present a generalized system and method for downstream
embodied AI tasks that leverage semantic web techniques
combined with perception algorithms. We show that, how using
ontology, a robot in exploration mode can create scene graphs
that are further used to create a generic knowledge graph and
semantic map of the environment to aid the task feasibility
analysis. These approaches are tested on realistic simulation
environments for later deployment in physical world.

Index Terms— Ontology, Scene Understanding, Task Plan-
ning, Cognitive Robotics.

I. BACKGROUND

Recently researchers have developed strong interest in
benchmark challenge tasks related to Embodied AI [3]. Here,
given realistic 3D dataset scenes enabled simulators [4], task
specific user instruction and final objective is provided. An
example task is ‘Object Nav’ [5], where given input of text
based user instruction like ‘go to the dining room’, a robotic
agent starting at a random location is required to reach in
the vicinity of the target location (here dining table) in an
unseen indoor scene. The actuation part of this task only
contains navigation from start to target location. On the other
hand, another instruction like ‘bring the apple from dining
table’ requires a robot to first reach the target location (as
a part of ObjectNav task), and then, hand hold and pick
the object (apple) using its manipulation and bring back to
the user again. So this instruction involves, firstly navigation
to target location, secondly manipulation of the object, and
finally bringing the object back to user’s location (the target
now is the user’s location). To achieve this, knowledge about
the indoor environment, the types of objects it contains,
and general relationships of objects with objects and objects
with regions, is required to be learnt or known apriori.
One way to get this knowledge is to start with an initial
knowledgebase and then adapting it based on exploration
of similar scenes, and then finally deploying a model for
a specific downstream task. In this case, the context of task

will be the state of the world model when the robot is getting
a task instruction. However, there will be scenarios in which
the user instructed task is not feasible to be executed. Here,
we further classify this task types represented in an ontology
hierarchy as follows:
(1) Feasible Tasks: Tasks that can be done by the robotic
agent R in the current context C.
(2) Non-feasible Tasks: Tasks that cannot be carried out by
R in C. This can be sub-categorized as follows:
(2.1) Out of vocabulary tasks - these tasks cannot be com-
pleted due to lack of any prior semantics matching in the
knowledgebase (example, turning on the car engine).
(2.2) Absurd tasks - these tasks cannot be done based on
general concepts description (example, put table on cup).
(2.3) Constraint Failing Tasks: each operation of the robotic
agent in the physical world has some feasibility checks or
constraints in place in the given context. Some examples of
task failures are: (a) when the target object is not in this
particular indoor layout (b) the robot is asked to do a task
that this version and model of the robot is incapable to do
due to lack of capability, like, say stirring the sugar water;
or climbing stairs for a wheeled robot (c) the target object
does not have a matching attribute, like say asking an air-
conditioner to control the humidity of the room, but this
object model does not support this humidity feature.

We model the above tasks within the framework of OWL
ontology to store the general relationships and RDF files to
store the facts. For implementation purpose, we have used
Protege [6] for initial ontology development. A domain
specific ontology is built on top of IEEE CORA [1], On-
toScene [7] and SemNav [8] using competency questions [9]
specific to concepts relevant to objects, task specifics, robot
capability (including sensor capability) and environment
constraints. When a user gives a task, just after the task
instruction, the system can infer if the task is feasible or
not based on semantic search in the knowledgebase, thereby
saving time of the robotic agent to avoid dead-end tasks
and hinting the user to alter the task instruction towards
a feasible task. The following sections provides details on
the two modules of scene understanding and task feasibility
analysis. The main contributions of this paper are:
(a) an extended ontology is developed for context under-
standing and task feasibility analysis.
(b) a system for scene representation and task execution is
presented that checks task feasibility with explanation.



Fig. 1: Ontology Guided Population of Scene Graph, Knowledge Graph and Semantic Map

II. SCENE UNDERSTANDING

Scene graph processing is important for robotic tasks
involving camera ego view images to represent symbolically
a set of components of the observation as nodes (objects) and
edges (inter-node relations). In this regard, Iterative Message
Passing [10] took prominence but has the drawback of con-
fusing the order of ‘subject-object’ in a relationship. Another
work [11] finds statistical correlations between object pairs,
but ignores less frequent relationships completely, even if
they are important. Also, the relations are most often just
adjacency, with no scope of further granular or separate
attributes with values. We overcome this limitations by using
ontology as a reference to generate the scene graph itself.

As shown in Fig. 3, the user gives an instruction for a
robotic downstream task (like ‘go to the kitchen’) that is
deciphered into a semantic web based stream of ‘subject-
predicate-object’ conditional states. The robot has a set of
continuous inputs at its disposal – RGB camera sensor
feeds and wheel odometry readings. The image stream is
passed via an image object detector (like YOLO [12] and
MaskRCNN [13] variants) to output a set of objects with
their respective confidence scores. Next, the pre-built object
ontology is queried using SPARQL to fetch object attributes,
and a look up is done on the Algorithm repository to check
which specific pattern recognition algorithms need to be
run on the scene to extract attribute information specific to
object(s) in view. The resultant scene graph contains visible
objects as nodes and edges as relations. A shape detector is
kept to cluster unknown or unclassified objects.

To extract a node properties like colour, 1-Nearest Neigh-
bour approach is used with standard colours representing
clusters. For edge property – like proximity with other
objects and regions, we compare the location of the bounding
boxes and try to normalize them on the basis of weight
bands assigned horizontally. Weight banding is needed in
cases where the robot camera only has RGB images as
input without depth; and in cases where depth perception
is beyond the sensitive range of 2.5 meter. We first divide
the image equally into number of bands horizontally and then
assign weights to each band using a pre-trained model [14]
for calculating depth depth maps to establish the proximity
relations. Next, the scene graphs across observations are
merged to form a single knowledge graph using a similarity

based aggregation technique [15] – thereby representing the
evolving relationships in the merged graph. The semantic
map helps in aligning robot odometry with view angles of
robot camera.

Estimating proximity between objects is often challenging
as objects detected might not be at the same depth from
a RGB camera. We first divide the image equally into
number of bands horizontally and then assign weights to
each band in the following manner: (a) Using a pre-trained
model for calculating depth we find out the depth maps of a
certain number of images (b) For each depth map image, we
calculate the average of pixel values in a horizontal band (c)
Then for each band we calculate average of the band values
that we get from all the depth map images i.e., average sum
over all images band-wise.

For each object we take the average of the weights
in which the corners of the detected bounding box (BB)
lie. AS BB is rectangle-shaped in case of YOLO object
detection, taking the diagonal points suffice. For example,
if any bounding box corner point lies in the height between
y1 and y2, it gets assigned its respective weight from the
list calculated earlier. We can say that objects at a greater
depth will be assigned a lower weight value and objects
which are closer get a greater weight value, therefore we
are dividing with the weight value so as to normalize them
and then calculate the Euclidean distance. Next, a function is
mapped from the Euclidean distance (as a reference to pixel
distance) to an estimated proximity value in the range of 0
to 1 as an edge attribute (1 means very close).

This knowledge graph expansion approach is tested for
navigation and manipulation tasks in the realistic simulation
environment of AI2Thor [16]. Simultaneously, a semantic
map of the explored area is stored in grid form containing
the global map view information in terms of following grid
attributes: (a) Target or goal region (b) Alternate paths not
visited (c) information regarding observations at that grid cell
(d) No objects were detected by perception in that grid area.
These two sub-modules: knowledge graph and semantic map
is leveraged in the next step of task feasibility analysis.

III. TASK FEASIBILITY ANALYSIS

As shown in Fig. 2, the user gives an instruction for a
manipulation task that is deciphered into a semantic web
based stream of ‘subject-predicate-object’ conditional states.



Fig. 2: System for Robotic Manipulation guided by Ontology (with example user instructed task)

Fig. 3: (a) A view of the ontology (b) Terminal interface for user instructions and robot’s responses

The robot has a set of continuous inputs at its disposal,
namely, RGB-D or RGB camera sensor, wheel odometry
readings, hand grasper co-ordinates and the sensor states.
For a given task like placing an apple in the fridge, the
system needs to initially check if the target object requiring
manipulation is already there in the current field of view.
Using the earlier sub-module of scene understanding, the
detection is done using standard object detection techniques
like YOLO. If object is found to missing or out-of-view, the
system needs to invoke ObjectNav task module to ‘Search
and Find’ the object via robot traversal [5], till the object
comes in robot’s field of view. When the object is in the
current view state, the system needs to query the ontology
to see a match between the robot capability, target object
property and the task type extracted from user instruction.
This query can be done either by a set of registered SPARQL
queries or by using template based matching. However,
template based matching has the drawback of knowing the
task type very specifically. In contrast, SPARQL, being a

semantic high level query language, enables expression of
complex logic more easier in terms of query pattern stacking
[17]. The idea is to query the ontology graph’s nodes and
edge properties to find a pattern match in relation to the
predicates of the original task instructed by a user. If the task
is not feasible, an explanation will be generated at runtime
by combining (a) annotations tagged to specific task failures,
and (b) a chain of missing conditions for failing the task, even
before start of the task execution. This saves significant task
execution time and avoids dead-end situations at runtime.

As an example, if a high level task has five sub-tasks
and even one of them, say the last one, is not feasible, the
robot should not waste effort to carry out the initial four sub-
tasks and then ending up in a state of non-feasible task. This
decision should be taken at the start of the task, if possible. If
the task is feasible, the robot will look up the task execution
list to see which of the sub-task needs to be done, and in
what sequence, and involving what entities. The list of task
actions and its mapping to actual robotic movements is stored



in Action Recipe module, that acts as a wrapper on top of the
actual physical world actuation of a robot. As an example,
the high level action ‘go forward’ will be mapped to moving
the robot motor wheels forward by some pre-set distance
or instructed distance estimate. Final stage is execution by
motors in robotic hand (wheels in case of navigation sub-
task) till goal state as per user instruction is reached. Another
aspect is the finding of task non-feasibility at the time of task
execution due to changes in world. Additionally, failures can
happen at the final actuation cycle as robots are physical
objects prone to: (a) moving motor parts setbacks and (b)
physical sensor errors. Another example follows. Suppose,
the robot at the start time found that the task given in Fig.
2 is feasible. But at the last step, it finds the fridge door as
locked; and hence is unable to place the object ‘apple’ inside
the fridge. This information of locked door state of fridge is
an observation during actuation and was not already known
to the robot before the task instruction was given. The system
in such a case, can search for a solution by a SPARQL query
to list down most likely solutions – like calling a human in
the location to unlock the fridge. The solution can be of two
types: (a) needs human to solve one or more sub-task step
so that the robot can continue with the task execution (b) the
robot can take alternate branch path for task execution (c) the
robot can query the knowledgebase with current context to
get a fresh set of task action sequence which is feasible and
will take the robot out of this dead-end. Once a task is found
to be infeasible, the reason for the task halt is gathered in
terms of a SPARQL query to find the missing links between
the goal state of the instruction and the current context scene.
A sample explanation run is shown in Fig. 3.

The workflow in Fig. 2 is further explained here. The user
instruction gets converted into a set of triples. Each of the
predicates of Task List will have some linking to sub-tasks
to execute; for example, the ‘Move’ task for object ‘cup’ can
be broken into: (a) Find cup (b) Pick cup (c) Find table (d)
Place cup on table – these are combinations of navigation
and manipulation – which will be handled by task executor
Action Recipe that maps high level actions to physical world
actuation. This abstraction of Action Recipe helps the system
to adapt to any robotic system by just having a wrapper
function on top of hardware implementation. When target
object is in view, the next step is to understand the state of
the world by observing other objects which are also in view.
Although an object might be visible, but if no path from the
current location exists due to some obstacles, the robot needs
to find a new unseen free path or tag the task as a failure.

There are different types of task failure cases. As an
example, if the instruction is to keep a table on a cup,
a SPARQL query will check if the task is possible or
not. If the semantics are incorrect, then the task should be
stopped. This is type 1 task feasibility failure. An example
query is: [ select ?relation from KB where ⟨object:table⟩
⟨predicate:LocatedOnTopOf⟩ ⟨object:cup⟩ ]. If the result of
the above query is null, it means that the task is infeasible.

The Type 2 task feasibility failure deals with static infor-
mation of the world – that includes the capabilities of the

robot and the environment settings. An example is asking a
robot without an arm to pick an object. In this case, instead
of the general common sense based robotic ontology, a
specific fact file for the current context needs to be accessed.
Robot specific knowledge will get populated based on robot
model. A discussed in section 2, The outer world of the
robot is generated as a semantic map out of the continuous
observations. Another aspect is the presence or absence of
static objects in the current scene. Once the robot explores
the entire scene, it will have a world map of the environment.
Next, if it is asked to execute a task like “check if TV is
powered on”, but the TV itself is not there in the space,
then although the instruction is valid, but it is infeasible
in this environment. An example query is of the form:
[ select ?object from SemanticMapKB where ⟨object:table⟩
⟨predicate:isPresentInWorld⟩ ⟨object:SemanticMap⟩ ]

The third aspect is Type 3 task feasibility checks, where
the dynamic pre-conditions of the task are not satisfied.
An example is when the robot is asked to pick an ob-
ject cup in its arm, when it is already holding a bot-
tle. In this case, the robot is capable of picking it up,
but due to the current state of the robot hand, it is un-
able to do so. An example query is: [ select ?state from
SemanticMapKB where ⟨object:robot⟩ ⟨predicate:hasPart⟩
⟨object:arm⟩ . ⟨object:arm⟩ ⟨predicate:hasState⟩ ?state .
?state ⟨predicate:equals⟩ ‘free’ˆxsd:string ].

The fourth aspect or Type 4 feasibility checks is when
while executing the task, some conditions leading to task
failure happens which are not pre-anticipated or observed
beforehand. An example is trying to put a cup in a fridge
whose door is locked. This is observed when the task is
commanded for carrying out but robot is not executing it. An
example query is: [ select ?state from SemanticMapKB where
⟨object:fridge⟩ ⟨predicate:hasState⟩ ‘locked’ˆxsd:string ].

When all the task feasibility checks pass, then only the
actual navigation or manipulation takes place by invoking
the Action Recipe module as stated earlier. As seen from
Fig. 3, this approach is tested in a simulation environment –
AI2Thor, that has realistic scenes and physics based objects.
In the figure, task action recipe generation is tested on four
tasks: pick, place, open and close – this can be extended to
further granular and higher level tasks.

IV. CONCLUSION AND FUTURE WORK

In this paper, a system for handling robotic context and
task feasibility based on an extended ontology is presented.
This aids the robot to save time and power by taking
decisions before start of an assigned task. An area of future
work is processing the perception data in triple format using
windowing mechanisms [18] of stream reasoning [19]
[20] to handle information in the streaming camera images.
In future, we plan to integrate external knowledgebase like
DBPedia [21] in the knowledge graph generation stage to
get a richer semantic understanding and adaption to new task
types. Also we plan to enhance the explanation module by
leveraging Large Language Models (LLM) [22].
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