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Abstract— High terrain variability and lack of structure in
off-road environments makes autonomous navigation a chal-
lenge. Even when employing a variety of sensors, perception
algorithms at best provide geometric, segmented and classified
information on the environment. In particular they lack the
semantics that describe the implication of the information.
For example, multiple factors such as terrain, agent capability,
and weather conditions play a coupled and significant role in
navigation. In this paper we propose to capture the semantics
by representing knowledge on complex off-road environments
through an ontology that facilitates description of classes of
objects and the implicit relationships between them. Domain-
specific ontologies to describe agent and weather semantics
are also presented, along with the logical rules that define
the coupling between these ontologies. This enables the use of
automated semantic-reasoners to answer queries and support
autonomous navigation and decision-making. We illustrate
these concepts on a realistic off-road environment to support
navigational planning for off-road autonomous vehicles.

I. INTRODUCTION

Autonomous driving with and without human interactions
is increasingly being explored in a variety of operations, in
applications ranging from transportation [1] to disaster re-
covery support [2]. A critical enabler to successful decision-
making in complex environments is a good understanding
of the environment, which entails understanding the mean-
ing (semantics) of that information in light of goals [3].
Representations to support such understanding (the world
model) typically goes beyond storage of raw data to include
abstractions and relationships between data elements [4],
[5], [6]. Prior work in world modeling has broadly evolved
in two distinct categories: (i) geometric modeling (such as
point cloud, 2D grid, 3D voxel based representations of the
world), with some segmentation and classification of parts of
the world model in terms of physically recognizable entities
(such as a building, or a tree, or grass, etc.) [7], [8], [9],
[10], and (ii) object-focused modeling, where objects are
defined in terms of their geometry and location, and the
environment is a composition of the objects [11], [12], [13].
In both the approaches, the environment is described with
sufficient levels of geometric and “textural” fidelity, so that
vehicle navigation (planning and control decision making) is
facilitated. However, the above approaches pay little attention
to the implicit information that can be extracted from the
non-geometric relationship between the objects in the world
and the flow of knowledge between them, which enables
inference of information not directly available from map data
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or perception. Any consideration for the semantic implication
is hard-coded into the subsequent navigational algorithms.

To address this issue, use of knowledge frameworks have
been explored. In [14], the robot knowledge is represented
in layers: a diagnostic knowledge or observation layer, a
common sense (or domain) knowledge layer, and lastly
instance knowledge, to support task planning. The use of
ontologies to represents the physical space using spatial
information and semantic knowledge of the objects in the
space for navigation and improving task planning capabilities
by reasoning about the semantic information is explored in
[15], [16], [17], [18], [19] and [20]. [21] explored the use
of spatial semantic hierarchy for qualitative representations
of space for robot exploration, using separate ontologies to
capture different domain aspects (sensory, controls, topo-
logical) and their interactions. In [22] the authors explore
the development of a knowledge framework that describes
the information that a service robot can use in regards to
perceptual features, and to answer queries about the relative
positioning of objects. Though most of the above knowledge-
framework based approaches do attempt to leverage the se-
mantic information in the environment, they do not explicitly
address the terrain of the environment, instead they focus
on indoor and domestic settings. In our work we propose
an ontological representation for complex unstructured off-
terrain environments capturing the terrain information.

The use of multiple ontologies for inference and decision-
making, as in [21] and [23] (for traffic systems) allows for
modular development, and promotes reuse across develop-
ment teams. In our proposed work, along with the ontology
for off-road terrain and environment, we also describe on-
tologies for the agent and the weather as they relate to off-
road navigation. By using the open and standard language
OWL [24] we are able to leverage independently developed
automated reasoners (e.g. [25], [26], [27]) to support decision
making.

Our primary contribution is the development of an
ontology-based world model that can capture information
about complex, unstructured environments consisting of off-
road terrains and the various agents that need to operate in
it, and allowing the use of automated reasoners to support
decision making. We demonstrate the suitability of the frame-
work in a real-world off-road environment.

II. OFF-ROAD SEMANTIC WORLD MODEL

A. Ontologies

The primary development in this paper is the world model
ontology, along with smaller supporting ontologies for the
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Fig. 1: System Architecture showing how the different ontologies
interact with each other. The information flows from the weather
ontology to the agent ontology, which is used to add information
to the world model to finally perform the reachabilty analysis.

weather and the agent. Fig. [T| shows the proposed framework
and knowledge flow from the weather ontology to the agent
ontology to the world model ontology. The Semantic Web
Rule Language (SWRL) [28] is used to define the rules
acting as constraints on the ontologies.

1) Weather and Agent Ontologies: We develop a minimal
ontology for the weather, focusing on concepts and func-
tional relationships that directly impact navigation capabili-
ties of the various agents. Specifically, whether it is rainy, and
how rain impacts terrain traversibility and sensor functioning.

Weather Ontology Concepts, inspired by [23], define the
state of the weather and utilize key aspects that are relevant
to the application, like rain, sunny, snowy, etc.

Agent Ontology Concepts categorize the agent based on
the mode of locomotion (pedestrian, ground vehicle, or an
aerial vehicle), the powertrain and steering architecture, the
sensors they could carry (cameras, LiDARs or RaDARs),
etc. Some example of properties and functional relations
associated with it are:

o weatherCapability - Data property specifying if a sensor
can be used in a given weather condition like rain.

o traversibilityGravelRain - Data property that defines if
the agent can traverse the terrain type gravel in rain.
Similar properties are defined for each instance of the
agent for the various possible combination of the terrain
and the weather.

Run Time Rules: The run time rules are used to specify
the usable agents in various weather conditions.
Examples of run time rules in the agent ontology:

« Only waterproof sensors can operate in rainy conditions.
« For an agent to be deemed capable to perform a mission
either one of it’s sensors must work in the weather.
Figure [2] shows some of the properties and the instances
used in the agent ontology.
2) World Model Ontology:
Ontological Concepts: The two main Entities defined are:

o feature - Subset of the world; represents human rec-
ognizable elements on the ground, such as buildings,
grassy fields or rivers. It inherits from terrain, and
geometry class.

e terrain - Defines terrains, such as concreteTerrain,
grassTerrain, mudTerrain, etc. which are observed in
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Fig. 2: Hierarchical representation various ontological concepts
used to define the agent ontology.
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off-road unstructured environments [29]. Subclass of
properties. It has data properties to provide a numerical
value for traversibility.
Figure [3] shows a subset of the inheritance relationships, and
object and data properties of the test examples.
Functional relations: They are defined using Object and
Data Properties. Examples:

o isNeighborOfFeature - Adjacency relationship between
the features. This is a symmetric relation.

e plan - Asserts which feature is the source, destination,
and which needs to be avoided, avoid.

o canReachFeature - Ability to reach one feature from
another, for a given agent type. This is not usually
explicitly defined in the structural definition, but rather
inferred from the traversibility properties and other
information like the neighbors of a feature. This is a
transitive relation.

Run Time Rules: Some key rules are categorized by their
purposes as below:
e Ontology Extensions for World Model:
— Traversibility of a feature, inheritable from terrain.
— If the maximum supported weight of a feature is
greater than the maximum weight of the agent then
the agent can use the feature, else it is asserted to be
avoided.

e Reachability Rules:

— If two neighboring features are not marked to be
avoided and are both traversible, then the two fea-
tures are reachable from each other.

e Planning Assistance Rules: A key objective of the
mission is to plan possible pathways from the set of
source features to the set of destination features.

— A feature that can be reached from any feature,
that is part of the source set, is assigned to the
reachabilitySet.

— Planning can be significantly enhanced by knowing
the set of deadEnds, i.e. the features that can be
completely eliminated without it impacting the ability
to perform a mission. Rules are defined to assert the
conditions under which a feature can be a deadEnd.
For example, if a feature that is not part of the source



________ jommm———— — agricultural
| neighbors 1 max \ building
""""" A1 supported | [ field J& [“muday field |
e L weight oretrucion muddy field
. - - - -—--
T
!§ path € paved road
______
) lnétatnfes of deadEnd \ vertices !
ntology e - g
v -: Data properties water body Still water
. Inheritance .
ISA il i [ N
—> Relationship P ibili 1
has Data Property [ geometry [ terrain ] )'\ _tr_a\iezslbl_llt_y_l
""" > Relationship

Object Property

N

Relationship

[ water terrain ][ mud terrain ][ gravel terrain ][ vegetation

Fig. 3: Hierarchical representation of the containment specifications and how the classes inherit from one another. This in conjunction to
the object and data properties forms the ontological representation for the world model.

has two neighbors, and one of the neighbors is not-
traversible, then other one is a deadEnd.

— Similarly, if a feature has n distinct neighbors and
n—1 of the neighbors are deadEnds, then the feature
is also a deadEnd.

— Similar rules are added to accommodate all the possi-
ble combinations when the neighbors are either non-
traversible or to be avoided or deadEnds.

B. Ontology Instantiation

We initially add individuals to the above mentioned on-
tologies separately. The weather ontology is initialised using
the weather conditions of the location of interest at the
time the navigational activity needs to be performed. The
agent ontology is instantiated with all the available agents.
We populate the type of sensors that each agent has, agent
size and weight, and its traversibility value over various
terrains in various weather conditions. Next, we instantiate
the world model ontology using the geometric, geographic
and semantic information of the environment, which is
obtained from segmenting aerial images of the environment
[30]. This is defined by the geographic location and shape,
which is represented using polygons. Lastly, a plan is defined
with the starting and end location that needs to be reached. In
addition, we can also define features that need to be avoided,
depending on the task at hand.

III. DECISION SUPPORT USING SEMANTIC MODELS

The ontologies are reasoned over using the Pellet reason-
ing engine [25]. The Algorithm [T] shows how the reasoning
uses multiple ontologies. First, reasoning is performed using
on the agent ontology to find the list of agents that can
operate in the given weather condition. Next, for each agent
in the set of agents, we define the traversibility values for the
various terrain types in the environment. This is necessary
as these values change based on the combination of the
agent, the terrain and the weather. Lastly, the reasoner is
run to find all the features reachable from the source, and
if the destination is reachable from the source, the agent is
specified as capable to perform the mission.

Algorithm 1 Reachability Analysis

1: Define the weather type in the agent ontology using weather
ontology
: Run Reasoner on agent ontology (Find the set of agents which
have sensors usable in the defined weather)
: for all agents in set do:
Define traversability values for all terrains
Run Reasoner (Check Reachability)
if Destination in Reachability Set then
Mark agent as capable of mission
Generate OG based input / graph for low level plan
end if
: end for
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IV. EXPERIMENTS

We apply the semantic world model framework developed
above to an off-road testing facility at the Texas A&M
University, Rellis Campus, College Station, Texas (FigHal).
The area is 1.5km x 1.5km, previously a sand-quarry, and
provides a lot of complexity, with muddy terrain, dense and
sparse trees and shrubs, off-road trails, etc. The bottom right
had some on-going construction activity, and in the north end
is the roadway connecting the region to the on-road areas.

A fleet of three vehicles (agents) is instantiated to per-
form the testing: a JEEP (ackerman steering vehicle), a
Polaris ATV (off-road vehicle with ackerman steering) and
a Clearpath Moose (off-road, multi-axled vehicle with dif-
ferential steering). The Moose and the JEEP have all three
sensors: cameras, LiDARs and RaDARs mounted and the
Polaris only has a LiDAR mounted on it. For generating
the world model ontology, we used an aerial image of the
environment, and segmented it into the different regions of
interest, shown in Fig. The world model ontology is
instantiated with this information, and a mission is defined
to go from the construction site to the road on the north in
rainy weather.

The automated reasoning was performed on a PC with
the following specifications: (i) System: 4 Core, 1.8GHz (i7-
8550U) with 16GB RAM(on Windows 11 OS), (ii) Software:
OWLAPI version 5.1.17 [31], and the OPENLLET (PEL-
LET) [32] reasoner v. 2.6.5 using JAVA for the programming.



(a) The aerial image of the off-road testing over-
laid with the various human-recognisable features
in the environment. Each feature has a semantic
class associated to it. The mission is to go from the
construction site in the bottom right corner to the
road in the north, in rainy conditions. The decision
to make is - which vehicle can do that. Can the

reasoner determine that the Moose can traverse
the muddy trails between the water bodies but the
JEEP cannot do that, and the Polaris does not have
the sensors to operate on rain?
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(b) Reachability analysis results for the Clearpath
Moose. Along with removing non-traversible re-
gions, the reachability analysis also removes dead-
Ends, such as the feature to the west of the river.
(A total of 67 features are removed). Only 66
features remain in the reachability set, reducing
the search space for the local planners. As the
destination is inside this set, we conclude that
the Moose can reach the destination from the
construction side.

(c) Compared to the Figure@ additional features
are marked to be avoided for the JEEP. These
features have muddy terrain, and the JEEP is not
capable of driving in muddy terrain during the
rain. It is this logical inference that is enabled by
the use of a declarative ontological representation
of the world model in conjunction with automated
reasoners, instead of being hard-coded into plan-
ning algorithms. There are a total of 61 features
out of 133 total features that are in the reachability
set for the JEEP.

Destination

Fig. 4: Reachability analysis performed using the proposed framework to first infer which vehicle will be able to autonomously navigate
during rainy conditions. In the example, the only possible path for JEEP to reach the destination would be to first go up north and then
east, where as the Moose also has an option to go north-east using a muddy trail to reach the destination, which can be seen in their

respective reachability sets.

A. Reasoning for Decision Support

The reasoners were used to check for consistency and
generate inference, on the following questions:

« Find the list of agents capable of operating in a given
weather condition, specifically “rainy” condition.

« Given a source region, find the reachabilitySet from
source. This set contains all the features that can be
reached from the source. If this set contains the desti-
nation then we infer that we can reach the destination.
We further remove the features inferred to be avoided
from this to get the smaller subset of the traversibility
graph or a cost map with a lot more occupied cells,
which is used to plan the optimal path from source to
destination.

B. Results

We observed that due to Polaris just having a LiDAR,
was deemed incapable of performing the mission after the
reasoning on the agent ontology. This happened as it’s only
sensors performance degrades in rainy conditions. Next,
we ran the reasoner on the world model ontology for the
JEEP and the Moose to find the reachability sets for them.
As, the Moose is able to traverse muddy terrain even in
rainy conditions, the reachability set for it is larger than
the reachability set for the JEEP. As the JEEP is unable
to traverse muddy terrain in rains, the muddy trails and
the excavated mine areas were inferred as additional avoid
features. In Figure 4c| we can see that for the JEEP we have
additional features which are marked as ones to be avoided
as compared to the one for the Moose, Figure [4b]

The reasoning takes around 30 seconds for each agent.
The environment has a total of 133 features. A traversability

graph with the features as nodes and neighbors as edges has

133 nodes and 694 edges. The reachable set of the Moose

and JEEP are reduced to 66 and 61; reduced to graph with

(66 nodes, 286 edges) and (61 nodes, 224 edges) respectively,

reducing the search space for the local planner considerably.
V. CONCLUSION

We have proposed a world modeling framework using
multiple ontologies for automated-reasoning-based planning
for autonomous agents in off-road environments. Ontologies
for the environment, the agent, and weather are defined,
that describe the world in terms of human understandable
features, off-road terrain, and their properties. Functional
relationships between the various entities are defined so
that automated reasoners could be used to make meaningful
insights about the environment and answer queries to support
decision making for off-road navigation. We illustrate the
value of the approach by applying the framework on a
real off-road environment and programmatically using an
automated reasoner (PELLET) to answer traversibility ques-
tions that are simultaneously dependent on the environment
(terrain), the agent, and the weather.

Future work would address uncertainty in the definitions of
the axioms and properties of the ontology, and the expected
growth in computational complexity with scale. Additionally,
we intend to work with collaborators to arrive at an open-
standard for off-road ontology.
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