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Abstract— In this paper we introduce knowledge-based 

cognitive control for autonomous mobile robots (AMR), 

targeting mining applications. Cognitive situation aware AMR 

control is demonstrated, relying on reasoning based on a 

knowledge base, which is maintained in real-time by robot 

perceptions. A use case is introduced with sharing perceptions 

of object detections via the knowledge base and with related 

AMR specific decision making about drivability of routes. 
Keywords— Ontology, cognitive architecture, machine vision, 

autonomous mobile robot 

I. INTRODUCTION 

Robotic technologies have been entering mines, like with 

Autonomous Mobile Robots (AMRs) used as inspection robots 

[1]. In addition, robotic technologies have contributed to heavy 

mining machinery in semi-autonomous drill rigs, dozers, and 

load haul dumpers, and also to fully autonomous dump trucks 

[2,3]. Increasing autonomy still can improve the efficiency and 

working conditions of the mines, by reducing the amount of 

people required to work in the tunnels and enabling operations 

by adapting to exceptional situations, like falling rocks and 

broken vehicles in tunnels.  

The level of autonomy can be increased by introducing 

cognitive capabilities to robotic machines. Using knowledge 

representation (KR) provides the robots and machines with 

cognitive skills for reasoning and perception, enabling them to 

autonomously perform a task, make decisions, and interact with 

a variety of environments ranging from static, structured, or 

fully observable to dynamic, unstructured, or partially 

observable [4].  

Liu et al [5] have formulated a computational Semantic 

Reasoning Framework (SRF) to be composed from 

• knowledge sources: provide raw data and extracted 

semantic knowledge, 

• computational frameworks: define mathematical 

relationships between known concepts, and perform 

inference, and 

• world representations: enable the robot to model its 

environment (objects, spaces, and agents) and 

behaviors (actions and tasks).  

Ontologies are an essential part of knowledge bases, 

providing the conceptual backbones. Ontologies offer several 

benefits such as interoperability through shared understanding 

of the problem domain; formalization to make shared 

understanding machine-processable; and semantic 

representation to provide quality services in robot systems. 

Ontologies can be classified into upper ontologies, reference 

ontologies, domain ontologies, and application ontologies, 

where the level of concretization increases in the corresponding 

order. Domain ontologies like AuR [6] focus on certain realms 

of the real world, introducing specific detailed concepts 

supporting application development, like functional concepts in 

AuR.  

Many developments have been reported using ontologies 

and knowledge bases to introduce cognitive capabilities for 

robots. Tosello et al [7] developed a proprietary Semantic 

Knowledge Base with descriptions of manipulation actions 

(grasp, push, place), objects (3D models and shapes), and 

environments (trajectories performed earlier), and tested it for 

object manipulation. Many others lay their solutions on existing 

upper, and domain ontologies, like Bermejo-Alonso et al [8] in 

developing an ontology-driven engineering methodology 

(ODEM) for developing self-awareness mechanisms into 

autonomous robots, based on a domain ontology for 

autonomous systems (OASys). Tenorth et al [9] developed a 

system to present and reason about the knowledge of detected 

objects by linking the object recognition output with the 

mapping system, relying on KnowRob domain ontology, which 

is based on the definitions of the OpenCyc upper ontology.  

We have approached the challenges of introducing 

autonomy to mining machines by developing knowledge-based 

control for robotic machines. The environmental conditions 

concerning the mobility of mining tunnels are maintained in an 

ontological knowledge base, designed in OWL, and 

implemented as RDF with Jena ontology tools [10]. Systems 

like SANDVIK AutoMine® [11] provides both optimized 

route-based automation and intelligent teleoperation with 

operator-assisting automatic steering. We are focusing on the 

automatic route driving and our contribution is in introducing a 

system for shared, mobility related knowledge, and maintaining 

it by perceptions of the mobile robots in real time. Our focus 



 

 

has been in application ontology and in developing a 

mechanism for real-time maintenance of knowledge to support 

robot operations. We have tested the approach by a working 

real-time demonstrator system, based on an AMR, with 

additional perception capabilities. In the following chapters we 

introduce our system architecture with its subsystems, and 

report on the first successful tests in our demonstrator. At the 

end we give short conclusions. 

II. KNOWLEDGE-BASED CONTROL SYSTEM  

A. Architecture 

The knowledge-based control system consists of three main 

parts: a cognitive platform, a perception platform, and a control 

platform. In Figure 1, the system architecture and the main 

information flow is shown. The role of each software platform 

is to control one of the main functionalities of the system. The 

perception platform detects objects in the environment and 

collects information about the detected objects, the cognitive 

platform maintains and uses the semantic knowledge, and the 

control platform controls the mission execution of the robot. 

Similar architecture is used with the open-source ORO platform 

[12], where the ontology is used with services providing access 

to the ontology. In our case the cognitive platform implements 

the same functionalities. 

 
Fig. 1. System architecture. 

B. Cognitive platform 

The cognitive platform consists of a knowledge base, a 
Fuseki server with the Generic Rule Reasoner, and knowledge 
maintainer, a software component that transfers and maintains 
the knowledge in knowledge base. The Fuseki server has rules 
that change the content of the knowledge base based on robot 
perceptions. The ontology specifying the structure of the 
knowledge base defines maps, interest points in maps, objects, 

obstacles, and drivable routes. Based on the information in the 
knowledge base at a given time, an event can be triggered that 
can modify robot missions. An event relates to e.g., detection of 
a rock blocking the tunnel during a mission. The knowledge base 
is implemented as an RDF file that contains the structure, and 
the initial values. The knowledge base used during the 
experimentations is an in-memory Jena RDF graph. For robot 
mission control, the main concept in the ontology is the 
RouteSegment class. Each individual of the RouteSegment has 
the following relationships: hasEndpoint, which indicates which 
waypoints are the endpoints of this particular route segment; 
belongsToMap, which indicates which map the route segment 
belongs to, and the possible relationship; and 
hasSlowDownArea, which indicates whether there is some area 
in the route segment where the robot must drive slowly. In 
addition to these relationships, the individual RouteSegment has 
the data values length, width, height, and speedLimit. The 
structure of the ontology is shown in Figure 2.  

 The knowledge maintainer of the cognitive platform 

ensures that any messages to the knowledge base, either queries 

collecting information or messages to update the knowledge 

base based on robot perceptions, are in the correct format and 

relayed to the relevant party. 

The adaptiveness of the system is dependent on the actor 

and situation, e.g. the type of perception, like detection of a 

possible obstacle object. This essentially means that the 

reasoner, and the rules, do not change the structure of the map, 

and instead they change attribute values of individuals, such as 

the width of a tunnel. The knowledge maintainer and mission 

planner are responsible for making sure that the information is 

used properly – because of an obstacle, a smaller robot may be 

able to drive through a tunnel, but a larger robot may not be able 

to drive through. 

 
Fig. 2. Ontology structure. 

C. Perception platform 

The perception platform uses an Intel RealSense D415 3D 

camera, from which both 2D image and 3D point cloud streams 

are utilized. The object detection system is currently based on 

VTT’s proprietary 3D computer vision SW [13], which filters 

and segments the 3D point clouds. Later on we integrate an 

object recognizer utilizing a convolutional neural network.  

This work has been funded by Business Finland and VTT. 



 

 

Detected objects are currently recognized as rocks or 

humans, based on the dimensions and shape of the object 

surfaces. From the object detection we get information about a 

surface, which is essentially the visible part of the object as a 

part of the acquired point cloud. From the point cloud, we 

segment surfaces and calculate the principal component 

analysis (PCA) for them. We get the shape and dimensional 

information in the form of a center point, eigenvalues, and 

eigenvectors, based on which we approximate the dimensions 

of the object. These approximated dimensions are used to 

determine whether the detected surface object would be 

representing a new object or be part of an existing object. If it 

is a new object, the information is sent to the knowledge 

maintainer that creates a SPARQL update message, which is 

then sent to the knowledge base. In the knowledge base, a rule 

is triggered that is used to update the new tunnel parameters 

based on the detected object information.  

D. Control platform 

The control platform is a combination of the mission 

selection, mission control, and mission planning. In mission 

selection, the operator selects the mission the robot should 

execute. The mission can be anything from moving to a specific 

location to a looping mission where the robot goes repeatedly 

between locations and performs tasks.  

The control platform is used to control the AMR, in our case 

a MIR100, based on the mission parameters from the operator 

and the possible events during the mission. The control 

platform consists of a GUI, a mission controller, a mission 

planner, and mission parameter files. The GUI provides the 

operator with a mission list to choose a mission and mission 

parameter file. The mission planner plans the exact way the 

robot needs to act to achieve the goal of the mission. This 

includes path planning and adaptation to different situations 

alongside the cognitive platform.  

The mission controller triggers and monitors the mission 

execution, ensuring that the mission is either executed 

successfully, or if something goes wrong, reporting to the 

operator about what happened. The mission controller 

essentially has a list of high-level actions that the robot is 

expected to perform at a given time, and the mission controller 

gives this information when needed to the mission planner, 

where the low-level actions are determined.  

A key part in the mission planner is the path planner. Path 

planning is divided into two parts: path planning before mission 

execution, and reactive path planning during mission execution. 

The path planning is implemented as a graph search using 

Dijkstra’s algorithm to find the optimal path. The graph used in 

path planning is a mobility graph created from the information 

stored in the knowledge base. The graph is created starting from 

the drivable routes, and nodes are added according to the 

endpoints of the RouteSegments that have been selected. We 

use high level graph-based path planning in addition to the MIR 

robot’s own path planning. This is to simplify the process and 

allow for an easy way to essentially block certain parts of the 

map for a robot, since the obstacle could be in a position where 

the robot might have to get close to it, before noticing that there 

is no way to get around it. 

Path planning before mission execution starts with 

collecting the current map from the knowledge base, then 

creating a graph where each RouteSegment individual is an 

edge in the graph, and the weight of the edge is based on the 

estimated time taken to travel through the RouteSegment. The 

created graph is practically a mobility graph, where only the 

RouteSegments that the current robot can travel along are added 

to the graph. The ability to travel through a RouteSegment is 

decided by finding if the current robot’s dimensions are less 

than the width and height of the RouteSegment.  
To control the robot, we used the MIR REST-API [14] to 

send it commands. These are simple commands, such as loading 
and executing a mission, changing mission parameters, pausing 
and resuming a mission, and creating areas where the robot acts 
differently, such as driving slowly. The API is used to control 
the robot but provides its clients with no knowledge of the 
overall mission properties. The mission controller itself is also 
unaware of the MIR REST-API functionality, and only provides 
an API adapter with high level commands.  

The MIR robot has its own laser scanners that it uses to 
create a map around it and navigate using the map. Figure 3 
shows the map that is used in our test environment. Blue circles 
with arrows indicate the waypoints. While the arrow indicates 
the orientation of the robot in the goal position, the waypoints 
are dynamic, and the correct position and orientation will be 
determined in the mission planner.  

 

Fig. 3. Robot map and waypoints. 

The robot control structure is designed to use a business as 
usual type of control: any deviation from the original mission 
should be done in a way that the mission controller does not need 
to react to it in any way. This means that any event is seen, and 
reacted to, automatically during the mission. Unless something 
important happens during the mission execution, for example no 
possible route being found, the robot being stuck, or the robot 
having entered an error state, the mission execution continues 
normally. If something abnormal happens, the mission 
controller will get information about this and then communicate 
it to the operator.  

In the mine context, the information we have of the map is 

often changing and there may be areas in the map that are not 

constantly supervised. Any changes occurring in these areas are 

therefore only seen when some actor, AMR or human arrives at 

the scene and finds something. In this example, if a rock is 

blocking a tunnel, it is likely known only after it is reported by 

some means. One of the types of reactive path planning is 

therefore changing the path according to unexpected events 

during the mission. In terms of the rock, we have two possible 

scenarios: either the AMR can avoid the obstacle, or the 



 

 

obstacle blocks the road. If the obstacle blocks the road, a new 

path will be calculated. 

Since in the mine context multiple AMRs, and potentially 

multiple types of AMRs, can be used simultaneously, each of 

these AMRs may gain information about the surrounding 

environment and then send that information to the knowledge 

base to be used also by the other AMRs. For example, when 

detecting an obstacle potentially blocking a route, we only 

change the parameters of the tunnel so that different types of 

AMRs can decide whether the tunnel is drivable or not, 

depending on their own dimensions. 

III. DEMONSTRATION USE CASE 

To simulate the mine environment and tunnels, we used two 
connected corridors in an office as a space where the robot can 
travel. We created a set of waypoints for the robot using the MIR 
map. These waypoints were then used to define route segments, 
which are the potentially travelable parts of the map. These route 
segments, and waypoints, were added to the Apache Jena Fuseki 
based knowledge base.  

With a simple example we demonstrated the mission 
planning and control of a cognitive, situation aware mobile 
robot. The routes were parts of an office corridor, and the rock 
was a cardboard box. The following three scenarios were tested 
and demonstrated: 

1. The route is clear the entire duration of the mission. 
2. A rock is detected at some point during the mission 

execution, and the rock can be avoided. 
3. A rock is detected at some point during the mission 

execution, and the rock blocks the route. 

In each scenario, the operator must first select a mission. For 
this, we used a simple user interface with a drop-down box, 
where the operator can select the correct mission. The mission 
mainly consists of the target location(s) corresponding to ore 
loading and unloading areas, and possible loops between these. 
For each location, the mission controller asks the path planner to 
calculate the ideal path to the location. In the knowledge base, 
each of these waypoints has a MIR mission ID as a parameter 
that is linked to this waypoint. For example, Waypoint01 would 
have a MIR mission GoToWaypoint01. The GoToWaypoint01 
MIR mission only has two actions: set (and reset) register, and 
move to Waypoint01. This move action is dynamic, and if 
Waypoint01 changes, so does the move action. After loading the 
MIR mission, the mission changes the register value to indicate 
the mission execution. Once the move action is done, the register 
is reset to a value that we check in a while loop to determine 
when the MIR mission is done.  

In the first use case scenario we simply showed that the 
AMR can perform the task without interruptions, meaning that 
the AMR does not stop or change behavior without good cause. 
The second and third scenario showed that the AMR can change 
behavior during the mission. Especially in the third scenario it is 
important to show that the path planning can be triggered by an 
outside event.  

In the second use case scenario, a rock is detected during the 
mission. First, for safety, the mission controller pauses the 
current MIR mission. While the robot is stationary, the cognitive 

platform and the mission planner determine what to do next. In 
this scenario, the decision is that we can drive around the rock, 
but more slowly. A speed limit in the form of a SlowDownArea 
instance is created in the knowledge base, and in the MIR map 
according to the information of the observed obstacle. Similarly, 
a Rock object is created in the knowledge base. Both objects are 
then linked to the current RouteSegment, and finally the MIR 
mission is resumed.  

In the third use case scenario, the information about the rock 
is added to the knowledge base, but now the decision is to 
change the route. First, the current MIR mission is deleted and a 
new mobility graph is created. In this mobility graph, the 
RouteSegment that has a blocking rock is not present. Another 
path is then calculated if one exists. If the new path exists, the 
mission planner sends this information to the robot, which will 
continue its mission 

We also tested a scenario where a rock was earlier detected 
and the knowledge base updated accordingly. In this case, either 
the robot moved slowly around the rock, or if the rock was 
blocking the path, the RouteSegment was not added to the 
mobility graph and the robot found another path to the goal.  

IV. CONCLUSIONS 

In this paper a simple use case for knowledge-based control 

with ontology-based reasoning and robot control in a mine 

context was introduced. We showed promising results of 

cognitive situation aware adaptive mobile robot control, relying 

on robot perceptions from the environment conditions. Future 

research should be done to add new different situations the 

robot can manage. This includes other obstacle types, human 

interactions with the robot and dynamic maps. A final future 

challenge will be to test the capabilities of the system in real 

underground situations with real mobile machines. 
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