
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Knowledge based control for autonomous mobile

machines in mines

Niko Känsäkoski

Intelligent Robotics

VTT Technical Research Centre of Finland

Oulu, Finland

niko.kansakoski@vtt.fi

Jere Backman

Machine Intelligence

VTT Technical Research Centre of Finland

Oulu, Finland

 jere.backman@vtt.fi

Tapio Heikkilä

Intelligent Robotics

VTT Technical Research Centre of Finland

Oulu, Finland

 tapio.heikkila@vtt.fi

Abstract— In this paper we introduce knowledge-based

cognitive control for autonomous mobile robots (AMR),

targeting mining applications. Cognitive situation aware AMR

control is demonstrated, relying on reasoning based on a

knowledge base, which is maintained in real-time by robot

perceptions. A use case is introduced with sharing perceptions

of object detections via the knowledge base and with related

AMR specific decision making about drivability of routes.
Keywords— Ontology, cognitive architecture, machine vision,

autonomous mobile robot

I. INTRODUCTION

Robotic technologies have been entering mines, like with

Autonomous Mobile Robots (AMRs) used as inspection robots

[1]. In addition, robotic technologies have contributed to heavy

mining machinery in semi-autonomous drill rigs, dozers, and

load haul dumpers, and also to fully autonomous dump trucks

[2,3]. Increasing autonomy still can improve the efficiency and

working conditions of the mines, by reducing the amount of

people required to work in the tunnels and enabling operations

by adapting to exceptional situations, like falling rocks and

broken vehicles in tunnels.

The level of autonomy can be increased by introducing

cognitive capabilities to robotic machines. Using knowledge

representation (KR) provides the robots and machines with

cognitive skills for reasoning and perception, enabling them to

autonomously perform a task, make decisions, and interact with

a variety of environments ranging from static, structured, or

fully observable to dynamic, unstructured, or partially

observable [4].

Liu et al [5] have formulated a computational Semantic

Reasoning Framework (SRF) to be composed from

• knowledge sources: provide raw data and extracted

semantic knowledge,

• computational frameworks: define mathematical

relationships between known concepts, and perform

inference, and

• world representations: enable the robot to model its

environment (objects, spaces, and agents) and

behaviors (actions and tasks).

Ontologies are an essential part of knowledge bases,

providing the conceptual backbones. Ontologies offer several

benefits such as interoperability through shared understanding

of the problem domain; formalization to make shared

understanding machine-processable; and semantic

representation to provide quality services in robot systems.

Ontologies can be classified into upper ontologies, reference

ontologies, domain ontologies, and application ontologies,

where the level of concretization increases in the corresponding

order. Domain ontologies like AuR [6] focus on certain realms

of the real world, introducing specific detailed concepts

supporting application development, like functional concepts in

AuR.

Many developments have been reported using ontologies

and knowledge bases to introduce cognitive capabilities for

robots. Tosello et al [7] developed a proprietary Semantic

Knowledge Base with descriptions of manipulation actions

(grasp, push, place), objects (3D models and shapes), and

environments (trajectories performed earlier), and tested it for

object manipulation. Many others lay their solutions on existing

upper, and domain ontologies, like Bermejo-Alonso et al [8] in

developing an ontology-driven engineering methodology

(ODEM) for developing self-awareness mechanisms into

autonomous robots, based on a domain ontology for

autonomous systems (OASys). Tenorth et al [9] developed a

system to present and reason about the knowledge of detected

objects by linking the object recognition output with the

mapping system, relying on KnowRob domain ontology, which

is based on the definitions of the OpenCyc upper ontology.

We have approached the challenges of introducing

autonomy to mining machines by developing knowledge-based

control for robotic machines. The environmental conditions

concerning the mobility of mining tunnels are maintained in an

ontological knowledge base, designed in OWL, and

implemented as RDF with Jena ontology tools [10]. Systems

like SANDVIK AutoMine® [11] provides both optimized

route-based automation and intelligent teleoperation with

operator-assisting automatic steering. We are focusing on the

automatic route driving and our contribution is in introducing a

system for shared, mobility related knowledge, and maintaining

it by perceptions of the mobile robots in real time. Our focus

has been in application ontology and in developing a

mechanism for real-time maintenance of knowledge to support

robot operations. We have tested the approach by a working

real-time demonstrator system, based on an AMR, with

additional perception capabilities. In the following chapters we

introduce our system architecture with its subsystems, and

report on the first successful tests in our demonstrator. At the

end we give short conclusions.

II. KNOWLEDGE-BASED CONTROL SYSTEM

A. Architecture

The knowledge-based control system consists of three main

parts: a cognitive platform, a perception platform, and a control

platform. In Figure 1, the system architecture and the main

information flow is shown. The role of each software platform

is to control one of the main functionalities of the system. The

perception platform detects objects in the environment and

collects information about the detected objects, the cognitive

platform maintains and uses the semantic knowledge, and the

control platform controls the mission execution of the robot.

Similar architecture is used with the open-source ORO platform

[12], where the ontology is used with services providing access

to the ontology. In our case the cognitive platform implements

the same functionalities.

Fig. 1. System architecture.

B. Cognitive platform

The cognitive platform consists of a knowledge base, a
Fuseki server with the Generic Rule Reasoner, and knowledge
maintainer, a software component that transfers and maintains
the knowledge in knowledge base. The Fuseki server has rules
that change the content of the knowledge base based on robot
perceptions. The ontology specifying the structure of the
knowledge base defines maps, interest points in maps, objects,

obstacles, and drivable routes. Based on the information in the
knowledge base at a given time, an event can be triggered that
can modify robot missions. An event relates to e.g., detection of
a rock blocking the tunnel during a mission. The knowledge base
is implemented as an RDF file that contains the structure, and
the initial values. The knowledge base used during the
experimentations is an in-memory Jena RDF graph. For robot
mission control, the main concept in the ontology is the
RouteSegment class. Each individual of the RouteSegment has
the following relationships: hasEndpoint, which indicates which
waypoints are the endpoints of this particular route segment;
belongsToMap, which indicates which map the route segment
belongs to, and the possible relationship; and
hasSlowDownArea, which indicates whether there is some area
in the route segment where the robot must drive slowly. In
addition to these relationships, the individual RouteSegment has
the data values length, width, height, and speedLimit. The
structure of the ontology is shown in Figure 2.

 The knowledge maintainer of the cognitive platform

ensures that any messages to the knowledge base, either queries

collecting information or messages to update the knowledge

base based on robot perceptions, are in the correct format and

relayed to the relevant party.

The adaptiveness of the system is dependent on the actor

and situation, e.g. the type of perception, like detection of a

possible obstacle object. This essentially means that the

reasoner, and the rules, do not change the structure of the map,

and instead they change attribute values of individuals, such as

the width of a tunnel. The knowledge maintainer and mission

planner are responsible for making sure that the information is

used properly – because of an obstacle, a smaller robot may be

able to drive through a tunnel, but a larger robot may not be able

to drive through.

Fig. 2. Ontology structure.

C. Perception platform

The perception platform uses an Intel RealSense D415 3D

camera, from which both 2D image and 3D point cloud streams

are utilized. The object detection system is currently based on

VTT’s proprietary 3D computer vision SW [13], which filters

and segments the 3D point clouds. Later on we integrate an

object recognizer utilizing a convolutional neural network.

This work has been funded by Business Finland and VTT.

Detected objects are currently recognized as rocks or

humans, based on the dimensions and shape of the object

surfaces. From the object detection we get information about a

surface, which is essentially the visible part of the object as a

part of the acquired point cloud. From the point cloud, we

segment surfaces and calculate the principal component

analysis (PCA) for them. We get the shape and dimensional

information in the form of a center point, eigenvalues, and

eigenvectors, based on which we approximate the dimensions

of the object. These approximated dimensions are used to

determine whether the detected surface object would be

representing a new object or be part of an existing object. If it

is a new object, the information is sent to the knowledge

maintainer that creates a SPARQL update message, which is

then sent to the knowledge base. In the knowledge base, a rule

is triggered that is used to update the new tunnel parameters

based on the detected object information.

D. Control platform

The control platform is a combination of the mission

selection, mission control, and mission planning. In mission

selection, the operator selects the mission the robot should

execute. The mission can be anything from moving to a specific

location to a looping mission where the robot goes repeatedly

between locations and performs tasks.

The control platform is used to control the AMR, in our case

a MIR100, based on the mission parameters from the operator

and the possible events during the mission. The control

platform consists of a GUI, a mission controller, a mission

planner, and mission parameter files. The GUI provides the

operator with a mission list to choose a mission and mission

parameter file. The mission planner plans the exact way the

robot needs to act to achieve the goal of the mission. This

includes path planning and adaptation to different situations

alongside the cognitive platform.

The mission controller triggers and monitors the mission

execution, ensuring that the mission is either executed

successfully, or if something goes wrong, reporting to the

operator about what happened. The mission controller

essentially has a list of high-level actions that the robot is

expected to perform at a given time, and the mission controller

gives this information when needed to the mission planner,

where the low-level actions are determined.

A key part in the mission planner is the path planner. Path

planning is divided into two parts: path planning before mission

execution, and reactive path planning during mission execution.

The path planning is implemented as a graph search using

Dijkstra’s algorithm to find the optimal path. The graph used in

path planning is a mobility graph created from the information

stored in the knowledge base. The graph is created starting from

the drivable routes, and nodes are added according to the

endpoints of the RouteSegments that have been selected. We

use high level graph-based path planning in addition to the MIR

robot’s own path planning. This is to simplify the process and

allow for an easy way to essentially block certain parts of the

map for a robot, since the obstacle could be in a position where

the robot might have to get close to it, before noticing that there

is no way to get around it.

Path planning before mission execution starts with

collecting the current map from the knowledge base, then

creating a graph where each RouteSegment individual is an

edge in the graph, and the weight of the edge is based on the

estimated time taken to travel through the RouteSegment. The

created graph is practically a mobility graph, where only the

RouteSegments that the current robot can travel along are added

to the graph. The ability to travel through a RouteSegment is

decided by finding if the current robot’s dimensions are less

than the width and height of the RouteSegment.
To control the robot, we used the MIR REST-API [14] to

send it commands. These are simple commands, such as loading
and executing a mission, changing mission parameters, pausing
and resuming a mission, and creating areas where the robot acts
differently, such as driving slowly. The API is used to control
the robot but provides its clients with no knowledge of the
overall mission properties. The mission controller itself is also
unaware of the MIR REST-API functionality, and only provides
an API adapter with high level commands.

The MIR robot has its own laser scanners that it uses to
create a map around it and navigate using the map. Figure 3
shows the map that is used in our test environment. Blue circles
with arrows indicate the waypoints. While the arrow indicates
the orientation of the robot in the goal position, the waypoints
are dynamic, and the correct position and orientation will be
determined in the mission planner.

Fig. 3. Robot map and waypoints.

The robot control structure is designed to use a business as
usual type of control: any deviation from the original mission
should be done in a way that the mission controller does not need
to react to it in any way. This means that any event is seen, and
reacted to, automatically during the mission. Unless something
important happens during the mission execution, for example no
possible route being found, the robot being stuck, or the robot
having entered an error state, the mission execution continues
normally. If something abnormal happens, the mission
controller will get information about this and then communicate
it to the operator.

In the mine context, the information we have of the map is

often changing and there may be areas in the map that are not

constantly supervised. Any changes occurring in these areas are

therefore only seen when some actor, AMR or human arrives at

the scene and finds something. In this example, if a rock is

blocking a tunnel, it is likely known only after it is reported by

some means. One of the types of reactive path planning is

therefore changing the path according to unexpected events

during the mission. In terms of the rock, we have two possible

scenarios: either the AMR can avoid the obstacle, or the

obstacle blocks the road. If the obstacle blocks the road, a new

path will be calculated.

Since in the mine context multiple AMRs, and potentially

multiple types of AMRs, can be used simultaneously, each of

these AMRs may gain information about the surrounding

environment and then send that information to the knowledge

base to be used also by the other AMRs. For example, when

detecting an obstacle potentially blocking a route, we only

change the parameters of the tunnel so that different types of

AMRs can decide whether the tunnel is drivable or not,

depending on their own dimensions.

III. DEMONSTRATION USE CASE

To simulate the mine environment and tunnels, we used two
connected corridors in an office as a space where the robot can
travel. We created a set of waypoints for the robot using the MIR
map. These waypoints were then used to define route segments,
which are the potentially travelable parts of the map. These route
segments, and waypoints, were added to the Apache Jena Fuseki
based knowledge base.

With a simple example we demonstrated the mission
planning and control of a cognitive, situation aware mobile
robot. The routes were parts of an office corridor, and the rock
was a cardboard box. The following three scenarios were tested
and demonstrated:

1. The route is clear the entire duration of the mission.
2. A rock is detected at some point during the mission

execution, and the rock can be avoided.
3. A rock is detected at some point during the mission

execution, and the rock blocks the route.

In each scenario, the operator must first select a mission. For
this, we used a simple user interface with a drop-down box,
where the operator can select the correct mission. The mission
mainly consists of the target location(s) corresponding to ore
loading and unloading areas, and possible loops between these.
For each location, the mission controller asks the path planner to
calculate the ideal path to the location. In the knowledge base,
each of these waypoints has a MIR mission ID as a parameter
that is linked to this waypoint. For example, Waypoint01 would
have a MIR mission GoToWaypoint01. The GoToWaypoint01
MIR mission only has two actions: set (and reset) register, and
move to Waypoint01. This move action is dynamic, and if
Waypoint01 changes, so does the move action. After loading the
MIR mission, the mission changes the register value to indicate
the mission execution. Once the move action is done, the register
is reset to a value that we check in a while loop to determine
when the MIR mission is done.

In the first use case scenario we simply showed that the
AMR can perform the task without interruptions, meaning that
the AMR does not stop or change behavior without good cause.
The second and third scenario showed that the AMR can change
behavior during the mission. Especially in the third scenario it is
important to show that the path planning can be triggered by an
outside event.

In the second use case scenario, a rock is detected during the
mission. First, for safety, the mission controller pauses the
current MIR mission. While the robot is stationary, the cognitive

platform and the mission planner determine what to do next. In
this scenario, the decision is that we can drive around the rock,
but more slowly. A speed limit in the form of a SlowDownArea
instance is created in the knowledge base, and in the MIR map
according to the information of the observed obstacle. Similarly,
a Rock object is created in the knowledge base. Both objects are
then linked to the current RouteSegment, and finally the MIR
mission is resumed.

In the third use case scenario, the information about the rock
is added to the knowledge base, but now the decision is to
change the route. First, the current MIR mission is deleted and a
new mobility graph is created. In this mobility graph, the
RouteSegment that has a blocking rock is not present. Another
path is then calculated if one exists. If the new path exists, the
mission planner sends this information to the robot, which will
continue its mission

We also tested a scenario where a rock was earlier detected
and the knowledge base updated accordingly. In this case, either
the robot moved slowly around the rock, or if the rock was
blocking the path, the RouteSegment was not added to the
mobility graph and the robot found another path to the goal.

IV. CONCLUSIONS

In this paper a simple use case for knowledge-based control

with ontology-based reasoning and robot control in a mine

context was introduced. We showed promising results of

cognitive situation aware adaptive mobile robot control, relying

on robot perceptions from the environment conditions. Future

research should be done to add new different situations the

robot can manage. This includes other obstacle types, human

interactions with the robot and dynamic maps. A final future

challenge will be to test the capabilities of the system in real

underground situations with real mobile machines.

REFERENCES

[1] A3 Robotics Marketing Team, How are Autonomous Mobile Robots
Used to Inspect Mines? 10/22/2019. In:
https://www.automate.org/blogs/how-are-autonomous-mobile-robots-
used-to-inspect-mines. (06.04.2023)

[2] Automine® Equipment Automation and Teleoperation systems. In:
https://www.rocktechnology.sandvik/en/products/automation/automine-
equipment-and-teleoperation-systems (06.04.2023)

[3] Jörgen Andersson, Pioneering Mine Automation in South Korea. 30
January 2023. In: https://solidground.sandvik/pioneering-mine-
automation-in-south-korea (06.04.2023)

[4] Manzoor, S.; Rocha, Y.G.; Joo, S.-H.; Bae, S.-H.; Kim, E.-J.; Joo, K.-J.;
Kuc, T.-Y. Ontology-Based Knowledge Representation in Robotic
Systems: A Survey Oriented toward Applications. Appl. Sci. 2021, 11,
4324. https://doi.org/10.3390/ app11104324

[5] Weiyu Liu, Angel Daruna, Maithili Patel, Kartik Ramachandruni, Sonia
Chernova, A survey of Semantic Reasoning frameworks for robotic
systems, Robotics and Autonomous Systems, Volume 159, 2023,
https://doi.org/10.1016/j.robot.2022.104294.

[6] IEEE Standard for Autonomous Robotics (AuR) Ontology, IEEE Std
1872.2-2021. 47 p.

[7] Elisa Tosello, Zhengjie Fan and Enrico Pagello, A Semantic Knowledge
Base for Cognitive Robotics Manipulation. I-COGROB2015 Workshop
on: "Towards Intelligent Social Robots – Current Advances in Cognitive
Robotics" , in Conjunction with Humanoids 2015.

[8] Bermejo-Alonso, J.; Hernández, C.; Sanz, R. Model-based engineering of
autonomous systems using ontologies and metamodels. In Proceedings of

https://www.automate.org/blogs/how-are-autonomous-mobile-robots-used-to-inspect-mines
https://www.automate.org/blogs/how-are-autonomous-mobile-robots-used-to-inspect-mines
https://www.rocktechnology.sandvik/en/products/automation/automine-equipment-and-teleoperation-systems
https://www.rocktechnology.sandvik/en/products/automation/automine-equipment-and-teleoperation-systems
https://solidground.sandvik/pioneering-mine-automation-in-south-korea
https://solidground.sandvik/pioneering-mine-automation-in-south-korea
https://doi.org/10.3390/

the 2016 IEEE International Symposium on Systems Engineering (ISSE),
Edinburgh, UK, 21–26 July 2016; pp. 1–8.

[9] Tenorth, M.; Kunze, L.; Jain, D.; Beetz, M. Knowrob-map-knowledge-
linked semantic object maps. In Proceedings of the 2010- IEEE 10th
IEEE-RAS International Conference on Humanoid Robots, Nashville,
TN, USA, 6–8 December 2010; pp. 430–435.

[10] Jena Ontology API. In: https://jena.apache.org/documentation/ontology
(06.04.2023)

[11] THE POWER OF AUTOMATION TAKING YOU MILES FURTHER -
SANDVIK AUTOMINE® FOR TRUCKS. Sandvik, 2019. In:
https://www.rocktechnology.sandvik/en/campaigns/automine-for-trucks/
(15.5.2023)

[12] S. Lemaignan, R. Ros, L. Mösenlechner, R. Alami and M. Beetz, "ORO,
a knowledge management platform for cognitive architectures in
robotics," 2010 IEEE/RSJ International Conference on Intelligent Robots
and Systems, Taipei, Taiwan, 2010, pp. 3548-3553, doi:
10.1109/IROS.2010.5649547

[13] T. Seppälä, J. Saukkoriipi, T. Lohi, S. Soutukorva, T. Heikkilä and J.
Koskinen, "Feature-Based Object Detection and Pose Estimation Based
on 3D Cameras and CAD Models for Industrial Robot
Applications," 2022 18th IEEE/ASME International Conference on
Mechatronic and Embedded Systems and Applications (MESA), Taipei,
Taiwan, 2022, pp. 1-5, doi: 10.1109/MESA55290.2022.10004402.

[14] MIR 2019 - 2.7.1 MIR100 REST API, MIR Robotics, 2019, 330 p.

 .

https://jena.apache.org/documentation/ontology
https://www.rocktechnology.sandvik/en/campaigns/automine-for-trucks/

